最近搜索:細胞培養(yǎng) 微生物學(xué) 分子生物 生物化學(xué)
首頁>>新聞中心>>技術(shù)中心
FUJIFILM wako | L-012化學(xué)發(fā)光探針

L-012化學(xué)發(fā)光探針



生化學(xué)用 for Biochemistry3116094040028274.png

規(guī)格含量 : 90.0+%(HPLC)

制造商 : FUJIFILM Wako Pure Chemical Corporation(富士膠片和光)

儲存條件:冷藏(干冰運輸)

CAS RN? : 143556-24-5   

分子式 : C13H8ClN4NaO2  

分子量 : 310.67

3116094040028274.png


◆基本信息


L-012 是一種高靈敏度的化學(xué)發(fā)光(CHL探針,比魯米諾(Luminol)試劑更有效。L-012 與多種類型的活性氧反應(yīng),這些活性氧來自人血液和口腔中激活的中性粒細胞或者大鼠腹膜腔。該產(chǎn)品可以用于有辣根過氧化物酶的ELISA 試劑盒,可提高反應(yīng)靈敏度。


結(jié)構(gòu)式

 

溶解及保存:蒸餾水溶解成20 mM/L(6.23 mg/mL)的水溶液,再用50 mM/L的Tris鹽酸緩沖液(pH 7.5)稀釋 至最終濃度為500 μM/L(有細胞的反應(yīng)體系)。另外,在沒細胞參與的反應(yīng)體系中時,建議使用終濃度為5~50 μM/L。母液冷凍保存,使用時再稀釋。



物性信息


外觀

白色~黃色,結(jié)晶~粉末

溶解性

可溶于水。



產(chǎn)品編號產(chǎn)品名稱產(chǎn)品規(guī)格產(chǎn)品等級
120-04891L-012
L-012化學(xué)發(fā)光探針
100 mg


拜爾迪是FUJIFILM wako授權(quán)代理商,

更多產(chǎn)品請咨詢:

北京拜爾迪生物技術(shù)有限公司

咨詢熱線:010-62960866


Q&A


Q: L-012能滲入細胞嗎?

A: 由于L-012對脂質(zhì)高度親和,它比luminol和lucigenin更能具有細胞滲透性。另一方面,ROS無限制地在胞外釋放。因此L-012被認(rèn)為也能

       檢測胞外ROS。

 

Q: L-012的使用濃度如何?

A: 這取決于應(yīng)用和條件。

       [體外] 培養(yǎng)細胞(EoL-1細胞): 500 ~ 800 μmol/L.

       全血和分離的中性粒細胞: 400 μmol/L

       多形核中性粒細胞(PMNs)(由小鼠中分離):  2 mmol/L

       無細胞的樣品: 4 μmol/L, 15 μmol/L, and 50 μmol/L

       [體內(nèi)] Balb/c 小鼠[皮下]: 20 ~ 80 μL of L-012(5mg/mL)

       Balb/c 小鼠[腹膜內(nèi)]: 100 μL of L-012 (15mg/mL)

       C57BL/10.Q (B10.Q) 小鼠 [腹膜內(nèi)]: 1 ~ 75 mg/kg

 

Q: 是否可用于動物活體成像?

A: 如果所用的小動物成像儀中有發(fā)光檢測探頭,就可以進行檢測。以下是文獻報道過的儀器型號:

      ?IVIS 100 imaging systems

      ?Infinite M200 [Tecan]
      ?Luminescence Reader BLR-201 [Aloka]
      ?Beckman-Coulter DTX880 multimode plate reader [Beckman]

 

Q:  是否可用于固定細胞?

A:  目前尚無證據(jù)表明,活性氧(ROS)在細胞活性停止后仍然存在。普遍看法是認(rèn)為在細胞活性停止后(細胞死亡)ROS消失。固定組織或

        細胞會停止細胞活性,因此不建議用于ROS檢測。

        本品無需固定檢測對象即可檢測到ROS,使用方法包括但不限于將其添加到細胞培養(yǎng)上清液中或進行動物腹腔注射。



參考文獻


 1.

Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity

Tsubasa Ogasahara, Yusuke Kouzai, Megumi Watanabe, Akihiro Takahashi, Kotaro Takahagi, June-Sik Kim, Hidenori Matsui, Mikihiro Yamamoto, Kazuhiro Toyoda, Yuki Ichinose, Keiichi Mochida, Yoshiteru Noutoshi

Front Plant Sci. 2022; 13: 1004184. Published online 2022 Sep 15. doi: 10.3389/fpls.2022.1004184

PMCID: PMC9521188


 2.

Ruscogenins Improve CD-Like Enteritis by Inhibiting Apoptosis of Intestinal Epithelial Cells and Activating Nrf2/NQO1 Pathway

Hexin Wen, Xiaofeng Zhang, Qingqing Li, Ju Huang, Guangyong Liu, Jingyue Zhao, Yiran Liu, Li Shen, Yuyang Li, Kun Yang, Lugen Zuo, Jing Li, Jing Nian, Ping Xiang, Hao Zhao, Liang Yu, Mulin Liu, Zhijun Geng, Xue Song

Oxid Med Cell Longev. 2022; 2022: 4877275. Published online 2022 Mar 10. doi: 10.1155/2022/4877275

PMCID: PMC8930266


 3.

TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1

Fernando Navarrete, Michelle Gallei, Aleksandra E. Kornienko, Indira Saado, Mamoona Khan, Khong-Sam Chia, Martin A. Darino, Janos Bindics, Armin Djamei

Plant Commun. 2022 Mar 14; 3(2): 100269. Published online 2021 Dec 17. doi: 10.1016/j.xplc.2021.100269

PMCID: PMC9073326


 4.

Noninvasive imaging of the lung NETosis by anti-Ly6G iron oxide nanoparticles

Jianghong Zhong, Chanyu Zheng, Haiqiang Gao, Wei Tong, Hui Hui, Jie Tian

Heliyon. 2022 Aug; 8(8): e10043. Published online 2022 Aug 3. doi: 10.1016/j.heliyon.2022.e10043

PMCID: PMC9382280


 5.

Glycolysis and the Pentose Phosphate Pathway Promote LPS-Induced NOX2 Oxidase- and IFN-β-Dependent Inflammation in Macrophages

Jonathan R. Erlich, Eunice E. To, Raymond Luong, Felicia Liong, Stella Liong, Osezua Oseghale, Mark A. Miles, Steven Bozinovski, Robert D. Brooks, Ross Vlahos, Stanley Chan, John J. O’Leary, Doug A. Brooks, Stavros Selemidis

Antioxidants (Basel) 2022 Aug; 11(8): 1488. Published online 2022 Jul 29. doi: 10.3390/antiox11081488

PMCID: PMC9405479


 6.

Identification of QTL for Target Leaf Spot resistance in Sorghum bicolor and investigation of relationships between disease resistance and variation in the MAMP response

Jennifer Kimball, Yaya Cui, Dongqin Chen, Pat Brown, William L. Rooney, Gary Stacey, Peter J. Balint-Kurti

Sci Rep. 2019; 9: 18285. Published online 2019 Dec 4. doi: 10.1038/s41598-019-54802-x

PMCID: PMC6893015


 7.

Chemical genetic identification of a lectin receptor kinase that transduces immune responses and interferes with abscisic acid signaling

Jiyoung Park, Tae-Houn Kim, Yohei Takahashi, Rebecca Schwab, Keini Dressano, Aaron B Stephan, Paulo HO Ceciliato, Eduardo Ramirez, Vince Garin, Alisa Huffaker, Julian I Schroeder

Plant J. Author manuscript; available in PMC 2020 May 1.

Published in final edited form as: Plant J. 2019 May; 98(3): 492–510. Published online 2019 Mar 7. doi: 10.1111/tpj.14232

PMCID: PMC6488365


 8.

Intranasal and epicutaneous administration of Toll-like receptor 7 (TLR7) agonists provides protection against influenza A virus-induced morbidity in mice

Eunice E. To, Jonathan Erlich, Felicia Liong, Raymond Luong, Stella Liong, Steven Bozinovski, Huei Jiunn Seow, John J. O’Leary, Doug A. Brooks, Ross Vlahos, Stavros Selemidis

Sci Rep. 2019; 9: 2366. Published online 2019 Feb 20. doi: 10.1038/s41598-019-38864-5

PMCID: PMC6382773


 9.

Mixed Linkage β-1,3/1,4-Glucan Oligosaccharides Induce Defense Responses in Hordeum vulgare and Arabidopsis thaliana

Sina Barghahn, Gregory Arnal, Namrata Jain, Elena Petutschnig, Harry Brumer, Volker Lipka

Front Plant Sci. 2021; 12: 682439. Published online 2021 Jun 17. doi: 10.3389/fpls.2021.682439

PMCID: PMC8247929


10.

The Pleiades are a cluster of fungal effectors that inhibit host defenses

Fernando Navarrete, Nenad Grujic, Alexandra Stirnberg, Indira Saado, David Aleksza, Michelle Gallei, Hazem Adi, André Alcantara, Mamoona Khan, Janos Bindics, Marco Trujillo, Armin Djamei

PLoS Pathog. 2021 Jun; 17(6): e1009641. Published online 2021 Jun 24. doi: 10.1371/journal.ppat.1009641

PMCID: PMC8224859


11.

Genome-wide association analysis of the strength of the MAMP-elicited defense response and resistance to target leaf spot in sorghum

Rozalynne Samira, Jennifer A. Kimball, Luis Fernando Samayoa, James B. Holland, Tiffany M. Jamann, Patrick J. Brown, Gary Stacey, Peter J. Balint-Kurti

Sci Rep. 2020; 10: 20817. Published online 2020 Nov 30. doi: 10.1038/s41598-020-77684-w

PMCID: PMC7704633


12.

Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3

Krishna Mohan Pathi, Philipp Rink, Nagaveni Budhagatapalli, Ruben Betz, Indira Saado, Stefan Hiekel, Martin Becker, Armin Djamei, Jochen Kumlehn

Front Plant Sci. 2020; 11: 543895. Published online 2020 Oct 21. doi: 10.3389/fpls.2020.543895

PMCID: PMC7609844


13.

Rapid repeatable in vivo detection of retinal reactive oxygen species

Ning Fan, Sean M. Silverman, Yang Liu, Xizhen Wang, Byung-Jin Kim, Liping Tang, Abbot F. Clark, Xuyang Liu, Iok-Hou Pang

Exp Eye Res. Author manuscript; available in PMC 2018 Aug 1.

Published in final edited form as: Exp Eye Res. 2017 Aug; 161: 71–81. Published online 2017 Jun 8. doi: 10.1016/j.exer.2017.06.004

PMCID: PMC5554724


14.

A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma

Reece J. Goiffon, Sara C. Martinez, David Piwnica-Worms

Nat Commun. 2015 Feb 10; 6: 6271. Published online 2015 Feb 10. doi: 10.1038/ncomms7271

PMCID: PMC4347050


15.

CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity

Kim-Kristin Prior, Matthias S. Leisegang, Ivana Josipovic, Oliver L?we, Ajay M. Shah, Norbert Weissmann, Katrin Schr?der, Ralf P. Brandes

Redox Biol. 2016 Oct; 9: 287–295. Published online 2016 Aug 24. doi: 10.1016/j.redox.2016.08.013

PMCID: PMC5021817